
© Copyright Ian D. Romanick 2008

16-July-2008

VGP393 – Week 1

⇨ Agenda:
 Course road-map
 Types of parallel architectures
 Parallel programming / threading terminology

© Copyright Ian D. Romanick 2008

16-July-2008

What should you already know?

⇨ C++ and object oriented programming
 Most assignments will include some boot-strap code

in the form of C++ classes

⇨ Fundamental data structures
 A lot of we cover will require working knowledge of

trees, lists, stacks, and queues
 Understanding of some STL types will be helpful, but

is not required

⇨ Some knowledge of linear algebra / vector math
 Many of the problems that are intersting to impelment

on parallel computers originate in linear algebra

© Copyright Ian D. Romanick 2008

16-July-2008

What will you learn?

⇨ Types of parallel computers and system
organization

 SIMD, MIMD, multi-core, multi-threaded, etc.

⇨ Multi-threading primitives and their use
 Threads, mutexes, semaphores, etc.

⇨ Debugging parallel programs
 Detecting and avoiding deadlock will be key

⇨ Measuring performance
 If we double the number of processors, how much

speed-up is realized?

© Copyright Ian D. Romanick 2008

16-July-2008

How will you be graded?

⇨ Four, bi-weekly quizzes worth 5 points each
⇨ Final exam worth 50 points
⇨ Four programming assignments

 One worth 10 points
 Three worth 30 points each

© Copyright Ian D. Romanick 2008

16-July-2008

How will programs be graded?

⇨ First and foremost, does the program produce
the correct output?

⇨ Are appropriate algorithms and data-structures
used?

⇨ Is the code readable and clear?

© Copyright Ian D. Romanick 2008

16-July-2008

Types of Parallel Computers

⇨ Flynn's taxonomy of sequential and parallel
computers provides a high-level model:

Executes one
instruction on a
one set of data

Single
Instruction

Multiple
Instruction

Single
Data

Multiple
Data

SISD

SIMD

MISD

MIMD
Executes one
instruction on

multiple sets of data

Executes multiple
instructions on

multiple sets of data

© Copyright Ian D. Romanick 2008

16-July-2008

Types of Parallel Computers

⇨ SISD isn't parallel at all
 Single instruction, single data is just another way of

saying sequential or scalar

⇨ Processor may internally execute instructions in
parallel, but the programming model is
sequential

 This is called superscalar

© Copyright Ian D. Romanick 2008

16-July-2008

SISD Architecture

⇨ Superscalar architectures rely on instruction
level parallelism

 The ability execute multiple sequential instructions in
parallel

 Branch instructions and data dependencies between
instructions make this difficult

 Instructions can be executed out of order to avoid stalls
 Exponentially more hardware is needed to keep a linear

number of execution units busy

 Cache misses and memory latency cause additional
stalls

 As a result, many execution units may site idle

© Copyright Ian D. Romanick 2008

16-July-2008

Types of Parallel Computers

⇨ MISD is nonsense
 No multiple instruction, single data systems have ever

been built

© Copyright Ian D. Romanick 2008

16-July-2008

Types of Parallel Computers

⇨ Single instruction, multiple data (SIMD)
computers execute the same instruction stream
on different data in parallel

 Popularized by Cray in the 70's and 80's
 Also known as vector processors

⇨ How to add two arrays of 1,000 numbers?
 Scalar computers would loop 1,000 times
 Vector computers would loop 1,000 / n times

 n is the number of processing elements in the array

© Copyright Ian D. Romanick 2008

16-July-2008

Types of Parallel Computers

Image from http://en.wikipedia.org/wiki/Image:Processor_board_cray-1_hg.jpg

http://en.wikipedia.org/wiki/Image:Processor_board_cray-1_hg.jpg

© Copyright Ian D. Romanick 2008

16-July-2008

Types of Parallel Computers

⇨ Where do we see SIMD today?
 Instruction “extensions” to general purpose

processors
 Altivec for PowerPC, MMX and SSE for x86, etc.

 DSPs
 GPUs

 DX9 class vertex and fragment shaders are generally
implemented as arrays of processing elements that execute
the same instructions on different vertices or fragments

 Any GPU that lacks dynamic branching (Geforce5 / Radeon
X800 or earlier) is in this category

© Copyright Ian D. Romanick 2008

16-July-2008

Types of Parallel Computers

⇨ Multiple instruction, multiple data (MIMD)
computers multiple instructions streams on
multiple sets of data

 Wide variety of MIMD architectures
 May not be as fast at repetitive data manipulations as

a comparable vector computer
 Generally, most flexible and most complicated to write

code for
 Naturally, this where we will spend most of our time

this term :)

© Copyright Ian D. Romanick 2008

16-July-2008

MIMD Architectures - SMP

⇨ Symmetric multiprocessor (SMP)
 Collection of identical processors
 All processors can access the same memory in,

generally, the same amount of time
 With a few exceptions, SMPs don't scale well beyond

4 processors
 Memory bandwidth becomes the limiting factor
 Some exotic memory architectures solve this, but they are

very expensive and difficult to produce
 Sequent Symmetry systems shipped with 30 Pentium

processors in the mid 90's

© Copyright Ian D. Romanick 2008

16-July-2008

MIMD Architectures - NUMA

⇨ Non-uniform memory access (NUMA)
architectures solve the SMP bandwidth problem

 Processors and memory are grouped in nodes
 Multiple nodes connected via fast interconnect to

create a large system with a flat memory space
 Access to memory on the same node is fastest
 All CPUs can see all memory

 Sequent and SGI shipped high-end NUMA systems in
the late 90's

 Sequent systems were initially based on nodes of 4
PentiumPro processors

 Multiprocessor Opteron systems are also NUMA

© Copyright Ian D. Romanick 2008

16-July-2008

MIMD Architectures - NUMA

⇨ AMD Opteron systems use
NUMA

 Each processor contains a
memory controller and cache

 Each processor also contains
links to two other processors

 A particular memory location
may be up to two “hops” away

Images from:
http://www.supermicro.com/Aplus/motherboard/Opteron/nForce/H8QC8+.cfm
http://www.ixbt.com/cpu/amd-hammer-family.shtml

http://www.supermicro.com/Aplus/motherboard/Opteron/nForce/H8QC8+.cfm
http://www.ixbt.com/cpu/amd-hammer-family.shtml

© Copyright Ian D. Romanick 2008

16-July-2008

MIMD Architectures - SMT

⇨ Simultaneous Multi-threading (SMT) puts
otherwise idle units to work

 The processor is equipped with multiple sets of
“process state”

 Registers, instruction pointer, stack pointer, etc.

 Instructions from multiple threads are issued as
execution units become available

 Linear increase in hardware to make use of linear increase in
execution units...

 ...at the expense of increased programming complexity

© Copyright Ian D. Romanick 2008

16-July-2008

MIMD Architectures - SMT

⇨ Where do we see SMT today?
 Developed by Digital for the Alpha 21464
 Various Intel processors (called Hyper-Threading

Technology):
 Pentium 4 (Northwood and later cores)
 Atom

 Various PowerPC processors:
 POWER Processing Element (PPE) of the Cell processor
 POWER5 (and later)
 Xenon (Xbox 360)

 Nvidia G80 and AMD R600 GPUs

© Copyright Ian D. Romanick 2008

16-July-2008

MIMD Architectures - SMT

⇨ Atom, Cell PPE, and Xenon are important
special cases

 Both CPUs are simple, in-order, scalar processors
 Multi-threading is necessary to get reasonable

performance!
 This type of architecture will likely be more common in

the future

© Copyright Ian D. Romanick 2008

16-July-2008

MIMD Architectures - CMP

⇨ Chip Multi-processing (CMP) puts multiple
independent processors on a single die

 Processors may or may not share cache or memory
controller

⇨ First shipped by IBM in the POWER4
 AMD ships 2, 3, and 4 core Athlon64
 Intel ships dual and quad core Core 2
 IBM ships 3 core Xenon

© Copyright Ian D. Romanick 2008

16-July-2008

MIMD Architectures - CMP

⇨ Growing area of processor development
 Dual core PCs are universal, quad core is “high end”

 Intel's Nehalem will have 4 cores w/2 threads per core1

 IBM's Cell contains 8 specialized cores
 POWER7 is rumored to have 2 chips per module, 8 cores w/

4 threads per core on each chip2

 Sun's UltraSPARC T1 contains up to 8 cores
 Expect 10's, 100's, or even 1,000's of cores in the

future3

1 http://en.wikipedia.org/wiki/Nehalem_(microarchitecture)
2 http://www.theregister.co.uk/2008/07/11/ibm_power7_ncsa/
3 http://news.cnet.com/8301-13924_3-9981760-64.html

http://en.wikipedia.org/wiki/Nehalem_(microarchitecture)
http://www.theregister.co.uk/2008/07/11/ibm_power7_ncsa/
http://news.cnet.com/8301-13924_3-9981760-64.html

© Copyright Ian D. Romanick 2008

16-July-2008

MIMD Architectures

⇨ Other MIMD architectures do exist
 Clusters of commodity systems
 Supercomputers with message based interconnects
 Etc.

⇨ As game developers, you're not likely to
encounter these types of systems

 Because of this, we're not going to cover them this
term

© Copyright Ian D. Romanick 2008

16-July-2008

Types of Parallel Computers

⇨ What's the take-home message?

© Copyright Ian D. Romanick 2008

16-July-2008

Types of Parallel Computers

⇨ What's the take-home message?
 Hardware architectures that were once eccentric are

now common place
 Future performance gains on desktops, consoles, and mobile

devices will come from these techniques

 Software development practices that were once the
domain of supercomputer researchers must be taken
up by application developers

© Copyright Ian D. Romanick 2008

16-July-2008

Amdahl's Law

⇨ Consider a total program run-time given by:

⇨ Distributing the work across P PEs results in:

T total1=T setupT computeT finalization

T totalP=T setup
T compute 1

P
T finalization

© Copyright Ian D. Romanick 2008

16-July-2008

Amdahl's Law

⇨ The speed up from running on P PEs is:

⇨ Portions of the code that cannot be run in
parallel are called serial terms

 The serial fraction, , is the fraction of running time
spent in the serial terms

 The parallelizable part is given by 1 -

S P=
T total1

T totalP

=
T setupT finalization

T total1

© Copyright Ian D. Romanick 2008

16-July-2008

Amdahl's Law

⇨ Rewrite T
total

(P) in terms of T
total

(1) and :

⇨ Rewrite S:

T totalP=T total 1
1−T total 1

P

S P=
T total1

1−
P T total 1

S P=
1

1−
P

© Copyright Ian D. Romanick 2008

16-July-2008

Amdahl's Law

⇨ What does it mean?

S P=
1

1−

P

© Copyright Ian D. Romanick 2008

16-July-2008

Amdahl's Law

⇨ What does it mean?

 The value of tells us how much effort to put into
optimizing or parallelizing the (1 –) portion

 It also tells us how much we can increase the
workload for a given number of PEs without
appreciably affecting the run-time

S P=
1

1−

P

© Copyright Ian D. Romanick 2008

16-July-2008

Threading Terminology

⇨ A process “...consists of (1) system resources
that are allocated to it, (2) a section of memory,
(3) security attributes (such as its owner and its
set of permissions) and (4) the processor state.1”

 Processor state includes register contents, the
program counter / instruction pointer, stack, and
physical memory addressed.

1 http://www.linfo.org/process.html

http://www.linfo.org/process.html

© Copyright Ian D. Romanick 2008

16-July-2008

Threading Terminology

⇨ A thread “...has a program counter that keeps
track of which instruction to execute next. It has
registers, which hold its current working vari-
ables. It has a stack, which contains the execu-
tion history...1”

1 http://www.informit.com/articles/article.aspx?p=25075

http://www.informit.com/articles/article.aspx?p=25075

© Copyright Ian D. Romanick 2008

16-July-2008

Threading Terminology

⇨ What is the difference between a thread and a
process?

© Copyright Ian D. Romanick 2008

16-July-2008

Threading Terminology

⇨ What is the difference between a thread and a
process?

 Processes consist of processor state, system
resources (memory, files, etc.) and security attributes

 Threads consist of processor state

⇨ We can think of a process as a collection of
resources, security attributes and at least one
thread

 This model is used by most current operating systems
 Unit of execution (UE) is a generic term for a thread

or a process

© Copyright Ian D. Romanick 2008

16-July-2008

Threading Terminology

⇨ A processing element (PE) is a generic term for
a piece of hardware that can execute program
instructions

 Processors in an SMP
 Cores in a CMP
 Processor contexts / threads in a SMT

© Copyright Ian D. Romanick 2008

16-July-2008

Threading Terminology

⇨ Load balance is the measure of how even work
is distributed among the available PEs

 Load balancing is the process of evenly distributing
work to the PEs

© Copyright Ian D. Romanick 2008

16-July-2008

Threading Terminology

⇨ Synchronization “refers to the coordination of
simultaneous [UEs] to complete a task in order
to get correct runtime order and avoid
unexpected race conditions.1”

 Two events are synchronous if they must happen at
the same time

 Otherwise, two events are asynchronous

1 http://en.wikipedia.org/wiki/Synchronization_(computer_science)

http://en.wikipedia.org/wiki/Synchronization_(computer_science)

© Copyright Ian D. Romanick 2008

16-July-2008

Threading Terminology

⇨ A race condition a programming error where the
“...result of the process is unexpectedly and
critically dependent on the sequence or timing of
other events.1”

1 http://en.wikipedia.org/wiki/Race_condition

http://en.wikipedia.org/wiki/Race_condition

© Copyright Ian D. Romanick 2008

16-July-2008

Threading Terminology

⇨ Deadlock occurs when forward progress is
halted because every task is waiting for some
other task to complete some action

“When two trains approach each other at a crossing, both
shall come to a full stop and neither shall start up again until
the other has gone.”

1 A Treasury of Railroad Folklore, B.A. Botkin & A.F. Harlow, p. 381
by way of http://en.wikipedia.org/wiki/Deadlock

http://en.wikipedia.org/wiki/Deadlock

© Copyright Ian D. Romanick 2008

16-July-2008

Next week...

⇨ Synchronization
 Critical sections
 Deadlock
 Synchronization primitives

⇨ Win32 / MFC threading API, part 1
 Creating / destroying threads
 Events
 Semaphores
 Mutexes
 Critical sections
 Compiling / linking multi-threaded programs

© Copyright Ian D. Romanick 2008

16-July-2008

Legal Statement

This work represents the view of the authors and does not necessarily
represent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

